Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Angew Chem Int Ed Engl ; : e202402318, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710653

ABSTRACT

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. Here, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized via a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which would extend our understanding of DIET and open up new avenue for DIET exploration and applications.

2.
Adv Sci (Weinh) ; 11(13): e2305818, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240578

ABSTRACT

Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , Sequence Analysis , Genome, Viral/genetics , Metagenome/genetics , Feces
3.
Nucleic Acids Res ; 52(D1): D1033-D1041, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37904591

ABSTRACT

The brain is constituted of heterogeneous types of neuronal and non-neuronal cells, which are organized into distinct anatomical regions, and show precise regulation of gene expression during development, aging and function. In the current database release, STAB2 provides a systematic cellular map of the human and mouse brain by integrating recently published large-scale single-cell and single-nucleus RNA-sequencing datasets from diverse regions and across lifespan. We applied a hierarchical strategy of unsupervised clustering on the integrated single-cell transcriptomic datasets to precisely annotate the cell types and subtypes in the human and mouse brain. Currently, STAB2 includes 71 and 61 different cell subtypes defined in the human and mouse brain, respectively. It covers 63 subregions and 15 developmental stages of human brain, and 38 subregions and 30 developmental stages of mouse brain, generating a comprehensive atlas for exploring spatiotemporal transcriptomic dynamics in the mammalian brain. We also augmented web interfaces for querying and visualizing the gene expression in specific cell types. STAB2 is freely available at https://mai.fudan.edu.cn/stab2.


Subject(s)
Brain , Databases, Genetic , Neurons , Single-Cell Gene Expression Analysis , Animals , Humans , Mice , Atlases as Topic , Brain/cytology , Brain/growth & development , Brain/metabolism , Neurons/metabolism , Transcriptome , Datasets as Topic
4.
Gut ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38050061

ABSTRACT

OBJECTIVE: We aim to compare the effects of proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) on the gut microbiota through longitudinal analysis. DESIGN: Healthy volunteers were randomly assigned to receive either PPI (n=23) or H2RA (n=26) daily for seven consecutive days. We collected oral (saliva) and faecal samples before and after the intervention for metagenomic next-generation sequencing. We analysed intervention-induced alterations in the oral and gut microbiome including microbial abundance and growth rates, oral-to-gut transmissions, and compared differences between the PPI and H2RA groups. RESULTS: Both interventions disrupted the gut microbiota, with PPIs demonstrating more pronounced effects. PPI usage led to a significantly higher extent of oral-to-gut transmission and promoted the growth of specific oral microbes in the gut. This led to a significant increase in both the number and total abundance of oral species present in the gut, including the identification of known disease-associated species like Fusobacterium nucleatum and Streptococcus anginosus. Overall, gut microbiome-based machine learning classifiers could accurately distinguish PPI from non-PPI users, achieving an area under the receiver operating characteristic curve (AUROC) of 0.924, in contrast to an AUROC of 0.509 for H2RA versus non-H2RA users. CONCLUSION: Our study provides evidence that PPIs have a greater impact on the gut microbiome and oral-to-gut transmission than H2RAs, shedding light on the mechanism underlying the higher risk of certain diseases associated with prolonged PPI use. TRIAL REGISTRATION NUMBER: ChiCTR2300072310.

5.
PLoS Genet ; 19(12): e1011112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150468

ABSTRACT

Mendelian randomization (MR) is an effective approach for revealing causal risk factors that underpin complex traits and diseases. While MR has been more widely applied under two-sample settings, it is more promising to be used in one single large cohort given the rise of biobank-scale datasets that simultaneously contain genotype data, brain imaging data, and matched complex traits from the same individual. However, most existing multivariable MR methods have been developed for two-sample setting or a small number of exposures. In this study, we introduce a one-sample multivariable MR method based on partial least squares and Lasso regression (MR-PL). MR-PL is capable of considering the correlation among exposures (e.g., brain imaging features) when the number of exposures is extremely upscaled, while also correcting for winner's curse bias. We performed extensive and systematic simulations, and demonstrated the robustness and reliability of our method. Comprehensive simulations confirmed that MR-PL can generate more precise causal estimates with lower false positive rates than alternative approaches. Finally, we applied MR-PL to the datasets from UK Biobank to reveal the causal effects of 36 white matter tracts on 180 complex traits, and showed putative white matter tracts that are implicated in smoking, blood vascular function-related traits, and eating behaviors.


Subject(s)
Biological Specimen Banks , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Multifactorial Inheritance , Reproducibility of Results , Neuroimaging , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
6.
Nucleic Acids Res ; 51(20): e105, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37843111

ABSTRACT

Cytosine base editors (CBEs), which enable precise C-to-T substitutions, have been restricted by potential safety risks, including DNA off-target edits, RNA off-target edits and additional genotoxicity such as DNA damages induced by double-strand breaks (DSBs). Though DNA and RNA off-target edits have been ameliorated via various strategies, evaluation and minimization of DSB-associated DNA damage risks for most CBEs remain to be resolved. Here we demonstrate that YE1, an engineered CBE variant with minimized DNA and RNA off-target edits, could induce prominent DSB-associated DNA damage risks, manifested as γH2AX accumulation in human cells. We then perform deaminase engineering for two deaminases lamprey LjCDA1 and human APOBEC3A, and generate divergent CBE variants with eliminated DSB-associated DNA damage risks, in addition to minimized DNA/RNA off-target edits. Furthermore, the editing scopes and sequence preferences of APOBEC3A-derived CBEs could be further diversified by internal fusion strategy. Taken together, this study provides updated evaluation platform for DSB-associated DNA damage risks of CBEs and further generates a series of safer toolkits with diversified editing signatures to expand their applications.


Subject(s)
Cytosine , Gene Editing , Humans , RNA/genetics , DNA Damage , DNA/genetics , CRISPR-Cas Systems
7.
bioRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37693522

ABSTRACT

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

8.
J Psychiatry Neurosci ; 48(5): E345-E356, 2023.
Article in English | MEDLINE | ID: mdl-37673436

ABSTRACT

BACKGROUND: A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS: We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS: Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS: The sample size of the GWAS was relatively small. CONCLUSION: Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.


Subject(s)
Genome-Wide Association Study , Mental Disorders , Humans , Brain/diagnostic imaging , Cognition , Mental Disorders/diagnostic imaging , Mental Disorders/genetics , Neurobiology
9.
Microbiome ; 11(1): 179, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37563687

ABSTRACT

BACKGROUND: The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS: We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS: We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Mycobiome , Humans , Aged , Mycobiome/genetics , Gastrointestinal Microbiome/genetics , Candida , Aging
10.
Genome Med ; 15(1): 56, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488639

ABSTRACT

BACKGROUND: Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS: By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS: We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS: Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.


Subject(s)
Brain Diseases , Humans , Reproducibility of Results , Promoter Regions, Genetic , Neurons , Gene Regulatory Networks
11.
Bioinformatics ; 39(39 Suppl 1): i21-i29, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37387171

ABSTRACT

MOTIVATION: Metagenomic binning methods to reconstruct metagenome-assembled genomes (MAGs) from environmental samples have been widely used in large-scale metagenomic studies. The recently proposed semi-supervised binning method, SemiBin, achieved state-of-the-art binning results in several environments. However, this required annotating contigs, a computationally costly and potentially biased process. RESULTS: We propose SemiBin2, which uses self-supervised learning to learn feature embeddings from the contigs. In simulated and real datasets, we show that self-supervised learning achieves better results than the semi-supervised learning used in SemiBin1 and that SemiBin2 outperforms other state-of-the-art binners. Compared to SemiBin1, SemiBin2 can reconstruct 8.3-21.5% more high-quality bins and requires only 25% of the running time and 11% of peak memory usage in real short-read sequencing samples. To extend SemiBin2 to long-read data, we also propose ensemble-based DBSCAN clustering algorithm, resulting in 13.1-26.3% more high-quality genomes than the second best binner for long-read data. AVAILABILITY AND IMPLEMENTATION: SemiBin2 is available as open source software at https://github.com/BigDataBiology/SemiBin/ and the analysis scripts used in the study can be found at https://github.com/BigDataBiology/SemiBin2_benchmark.


Subject(s)
Algorithms , Metagenome , Cluster Analysis , Metagenomics , Software
12.
Adv Sci (Weinh) ; 10(25): e2302159, 2023 09.
Article in English | MEDLINE | ID: mdl-37382405

ABSTRACT

DNA methylation plays a crucial role in the survival of bacteriophages (phages), yet the understanding of their genome methylation remains limited. In this study, DNA methylation patterns are analyzed in 8848 metagenome-assembled high-quality phages from 104 fecal samples using single-molecule real-time sequencing. The results demonstrate that 97.60% of gut phages exhibit methylation, with certain factors correlating with methylation densities. Phages with higher methylation densities appear to have potential viability advantages. Strikingly, more than one-third of the phages possess their own DNA methyltransferases (MTases). Increased MTase copies are associated with higher genome methylation densities, specific methylation motifs, and elevated prevalence of certain phage groups. Notably, the majority of these MTases share close homology with those encoded by gut bacteria, suggesting their exchange during phage-bacterium interactions. Furthermore, these MTases can be employed to accurately predict phage-host relationships. Overall, the findings indicate the widespread utilization of DNA methylation by gut DNA phages as an evasion mechanism against host defense systems, with a substantial contribution from phage-encoded MTases.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Methyltransferases/genetics , DNA Methylation/genetics , DNA , Metagenome
13.
IEEE J Biomed Health Inform ; 27(8): 4040-4051, 2023 08.
Article in English | MEDLINE | ID: mdl-37247318

ABSTRACT

Positron emission tomography (PET) with fluorodeoxyglucose (FDG) or florbetapir (AV45) has been proved effective in the diagnosis of Alzheimer's disease. However, the expensive and radioactive nature of PET has limited its application. Here, employing multi-layer perceptron mixer architecture, we present a deep learning model, namely 3-dimensional multi-task multi-layer perceptron mixer, for simultaneously predicting the standardized uptake value ratios (SUVRs) for FDG-PET and AV45-PET from the cheap and widely used structural magnetic resonance imaging data, and the model can be further used for Alzheimer's disease diagnosis based on embedding features derived from SUVR prediction. Experiment results demonstrate the high prediction accuracy of the proposed method for FDG/AV45-PET SUVRs, where we achieved Pearson's correlation coefficients of 0.66 and 0.61 respectively between the estimated and actual SUVR and the estimated SUVRs also show high sensitivity and distinct longitudinal patterns for different disease status. By taking into account PET embedding features, the proposed method outperforms other competing methods on five independent datasets in the diagnosis of Alzheimer's disease and discriminating between stable and progressive mild cognitive impairments, achieving the area under receiver operating characteristic curves of 0.968 and 0.776 respectively on ADNI dataset, and generalizes better to other external datasets. Moreover, the top-weighted patches extracted from the trained model involve important brain regions related to Alzheimer's disease, suggesting good biological interpretability of our proposed method."


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Cognitive Dysfunction/diagnostic imaging
14.
Gut Microbes ; 15(1): 2205386, 2023.
Article in English | MEDLINE | ID: mdl-37140125

ABSTRACT

Cross-cohort validation is essential for gut-microbiome-based disease stratification but was only performed for limited diseases. Here, we systematically evaluated the cross-cohort performance of gut microbiome-based machine-learning classifiers for 20 diseases. Using single-cohort classifiers, we obtained high predictive accuracies in intra-cohort validation (~0.77 AUC), but low accuracies in cross-cohort validation, except the intestinal diseases (~0.73 AUC). We then built combined-cohort classifiers trained on samples combined from multiple cohorts to improve the validation of non-intestinal diseases, and estimated the required sample size to achieve validation accuracies of >0.7. In addition, we observed higher validation performance for classifiers using metagenomic data than 16S amplicon data in intestinal diseases. We further quantified the cross-cohort marker consistency using a Marker Similarity Index and observed similar trends. Together, our results supported the gut microbiome as an independent diagnostic tool for intestinal diseases and revealed strategies to improve cross-cohort performance based on identified determinants of consistent cross-cohort gut microbiome alterations.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Machine Learning , Research Design , Metagenome , Metagenomics/methods
15.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37114640

ABSTRACT

Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.


Subject(s)
Metagenome , Metagenomics , Humans , Sequence Analysis, DNA , Bacteria/genetics , Gastrointestinal Tract
16.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36847697

ABSTRACT

Brain imaging genomics is an emerging interdisciplinary field, where integrated analysis of multimodal medical image-derived phenotypes (IDPs) and multi-omics data, bridging the gap between macroscopic brain phenotypes and their cellular and molecular characteristics. This approach aims to better interpret the genetic architecture and molecular mechanisms associated with brain structure, function and clinical outcomes. More recently, the availability of large-scale imaging and multi-omics datasets from the human brain has afforded the opportunity to the discovering of common genetic variants contributing to the structural and functional IDPs of the human brain. By integrative analyses with functional multi-omics data from the human brain, a set of critical genes, functional genomic regions and neuronal cell types have been identified as significantly associated with brain IDPs. Here, we review the recent advances in the methods and applications of multi-omics integration in brain imaging analysis. We highlight the importance of functional genomic datasets in understanding the biological functions of the identified genes and cell types that are associated with brain IDPs. Moreover, we summarize well-known neuroimaging genetics datasets and discuss challenges and future directions in this field.


Subject(s)
Brain , Genomics , Humans , Genomics/methods , Brain/diagnostic imaging , Brain/metabolism , Phenotype , Neuroimaging/methods
17.
Nat Commun ; 14(1): 414, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702837

ABSTRACT

Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.


Subject(s)
Cytosine , Gene Editing , Adenine , DNA , RNA , Adenosine/genetics , CRISPR-Cas Systems/genetics
18.
Nat Commun ; 14(1): 413, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702845

ABSTRACT

Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Mutation , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Cytosine/metabolism
19.
Genome Biol ; 23(1): 242, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376928

ABSTRACT

Evaluating the quality of metagenomic assemblies is important for constructing reliable metagenome-assembled genomes and downstream analyses. Here, we present metaMIC ( https://github.com/ZhaoXM-Lab/metaMIC ), a machine learning-based tool for identifying and correcting misassemblies in metagenomic assemblies. Benchmarking results on both simulated and real datasets demonstrate that metaMIC outperforms existing tools when identifying misassembled contigs. Furthermore, metaMIC is able to localize the misassembly breakpoints, and the correction of misassemblies by splitting at misassembly breakpoints can improve downstream scaffolding and binning results.


Subject(s)
Metagenome , Metagenomics , Sequence Analysis, DNA/methods , Metagenomics/methods , Machine Learning , Benchmarking , Software , Algorithms
20.
BMC Med ; 20(1): 266, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36031604

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), a progressive neurodegenerative disease, is the most common cause of dementia worldwide. Accumulating data support the contributions of the peripheral immune system in AD pathogenesis. However, there is a lack of comprehensive understanding about the molecular characteristics of peripheral immune cells in AD. METHODS: To explore the alterations of cellular composition and the alterations of intrinsic expression of individual cell types in peripheral blood, we performed cellular deconvolution in a large-scale bulk blood expression cohort and identified cell-intrinsic differentially expressed genes in individual cell types with adjusting for cellular proportion. RESULTS: We detected a significant increase and decrease in the proportion of neutrophils and B lymphocytes in AD blood, respectively, which had a robust replicability across other three AD cohorts, as well as using alternative algorithms. The differentially expressed genes in AD neutrophils were enriched for some AD-associated pathways, such as ATP metabolic process and mitochondrion organization. We also found a significant enrichment of protein-protein interaction network modules of leukocyte cell-cell activation, mitochondrion organization, and cytokine-mediated signaling pathway in neutrophils for AD risk genes including CD33 and IL1B. Both changes in cellular composition and expression levels of specific genes were significantly associated with the clinical and pathological alterations. A similar pattern of perturbations on the cellular proportion and gene expression levels of neutrophils could be also observed in mild cognitive impairment (MCI). Moreover, we noticed an elevation of neutrophil abundance in the AD brains. CONCLUSIONS: We revealed the landscape of molecular perturbations at the cellular level for AD. These alterations highlight the putative roles of neutrophils in AD pathobiology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Brain , Cohort Studies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...